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Abstract 

An estimated ninety percent of all species are either invertebrate or microbial but most conservation science and policy 

ignores them. This is disastrous for humanity as this biodiversity contains the majority of the genetic, chemical, metabolic 

and population diversity on Earth that is of enormous - and irreplaceable - economic importance. Microbes and 

invertebrates are at the core of all the primary industries and are the resource for a wide range of secondary industries. 

The low profile of these organisms has been attributed to the absence of technologies to handle them. This no longer 

applies. By including these organisms in mainstream conservation science and policy, several profound benefits accrue: 

1) Informing the many biodiversity-based industries about the very species upon which they depend. 2) Showing these 

industries the extent of their actual and potential resource base. 3) Inform both industry and society on the ‘nuts and bolts’ 

of ecosystem services, the species involved, and their functions. 4) As industries recognise their reliance on biodiversity, 

the responsibility for biodiversity conservation is spread to sectors not normally associated with it. 5) It follows that it is in 

the self-interest of the biodiversity-based industries to protect their resources and to identify biodiversity conservation as 

core business. 6) Once this is achieved the conservation issues or crises among invertebrates and microbes, especially those 

crucial to ecosystem services or industry, can be identified. As long as biodiversity is erroneously presented as consisting 

of a few vertebrate and higher plant groups of concern chiefly to “conservationists”, we continue to make unnecessary 

enemies of the individuals, lobby groups, political parties and industries who, because of that presentation, continue to be 

blind to its multiple and pervasive economic benefits. 

Introduction 

“7 make no apologies for putting microorganisms on a pedestal above all other living things, for if the last blue 

whale choked to death on the last panda, it would be disastrous but not the end of the world. But if we accidentally 

poisoned the last two species of ammonia-oxidisers, that would be another matter. It could be happening now and 

we wouldn't even know... ” 

(Professor Tom Curtis, July 2006, Nature Reviews Microbiology) 

“Setting up dichotomies of economic growth versus the protection of nature is a dead-end for conservation! 

(Michelle Marvier, June 2012, Frontiers in Ecology and the Environment). 

A major omission in the Rio Convention of Biological Diversity (1992) was a clear statement that most species 

are either invertebrate or microbial. Perhaps even more important was the absence of any acknowledgement 

that these organisms harbour the majority of genetic, metabolic and chemical diversity on Earth (Demain 

2000; Keeling et al. 2005; Achtman et al. 2008; Mora et al. 2011). The numbers of species are so vast that even 
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today nobody knows what proportion of the total this diversity represents, but there is plenty of evidence that 

it is in excess of 90% (e.g. Ponder and Lunney, 1999). Thus, conservation science largely ignores this majority, 

which is bad science, and any policy based on it must be bad policy 

Biodiversity conservation, be it in science, government departments or non-government organisations, the 

central operational proposition is that biodiversity is de facto subsets of flowering plant and vertebrate groups. 

In Australia, for example, biodiversity science and policy is mostly directed at vertebrate and higher plant 

groups, endangered species, remnant native vegetation, and the management of invasive species. Further, this 

biodiversity is often viewed as disease and pest organisms and therefore hardly a target for conservation (New 

2006). How mistaken is this and why does it matter? It produces the absurd and tragic situation whereby a 

farmer, asked if his property harboured any biodiversity, answered along the lines, “Well, there are some patches 

of native vegetation which attract some birds and butterflies; a few nice species”. The absurdity of this is that 

beneath his feet are thousands of microbial and invertebrate soil species. The tragedy is that these components 

of biodiversity, whose metabolic activities together regulate many aspects of the fertility, hydrodynamics and 

structure of his soil, remain unacknowledged even though they play a huge part in the productivity, yields 

and profits of his business. Worse still, farmers tend to encounter biodiversity conservation as legislation 

requiring particular remedial actions that are costly in terms of time and labour. A frequent perception is that 

biodiversity conservation is intrusion by outsiders - government departments, environmental organisations 

and academics. The fatal consequence of this bad science and policy is that few in the agricultural industries 

recognise that this biodiversity populates the human food chain or that their income is biodiversity-based. 

This situation is largely because biodiversity is presented as subsets of the flowering plants and vertebrates 

in their locality and not to the huge numbers of species mostly, but not exclusively in the soil, that enable 

their crops and forage plants to grow. The skewed scientific emphasis means also that the study of invasive 

species is critically biased away from microbes and invertebrates (Pysek et al. 2008; Jeschke et al. 2010). The 

invasive fungal plant pathogen, Puccinia psidii, now threatens a wide variety of native Australian plant species 

(Carnegie and Cooper 2011). When it comes to endangerment, the greatest number of projected species 

extinctions are invertebrate (Collen et al. 2012). This is widely ignored even in the context of the complex 

invertebrate and microbial food webs that maintain the target iconic species of popular conservation. The 

situation is exemplified by a recent statement in a front-line scientific journal: ‘Thus, farming will continue 

to be the major cause of habitat and biodiversity loss’ (Ramankutty and Rhemtulla 2012). It is of course true 

in the conventional sense that land clearing for food production eliminates native vegetation and the natural 

habitat of the kinds of animals that conservationists focus on. What it ignores, ironically, is that modern 

farming remains a biodiversity-based industry, but its methods threaten the very biodiversity of the soils upon 

which it depends. 

This paper explores the worrying situation in which biodiversity is widely regarded as amounting to a relatively 

few conspicuous species so that the conservation of biodiversity is thought of as a problem exclusively for 

conservationists (e.g. Redford et al. 2012); rather than being an issue for many industries central to the economy 

and human well-being worldwide - a situation that recent history shows creates many unnecessary enemies. 

A young science 

Space travellers approaching Earth and interrogating their databanks for the number of species inhabiting 

the planet would arrive at a surprising answer: relatively little is known about this. Recent estimates of the 

numbers of species on Earth vary from 7 to 10 million and it is thought that 86% of terrestrial species and 

91% of marine species still await discovery. Almost all estimates ignore the Archaea and the Bacteria and 

estimates of the number of fungal species are wobbly at around 1.5 million (Keeling et al. 2005; Mora et al. 

2011). There appear to be about 6.1 million arthropod species (Basset et al. 2012) alone and each of these will 

harbour a complex microbial community or microbiome. The marine bacterium Pelagibacter ubique (Yooseph 

et al. 2010) appears to be the most common species on Earth and is essential to some global nutrient cycles 

but, because it is microscopic and planktonic, it is unknown to the public and indeed most scientists. The 

Archaea and the Bacteria are a serious challenge to biodiversity science as they exchange genes so freely that 

the category of‘species’ may be difficult to apply (Lienau et al. 2011). As microbial diversity is understood its 

biodiversity, however measured, is likely to dwarf all other groups of organisms (Achtman et al. 2008). 

Neglect of the invertebrates and microorganisms has been attributed to a lack of appropriate technologies 

but this no longer applies. Many kinds of invertebrates are now included in surveys through the application 

a wide range of systems designed for this purpose (e.g. Oliver and Beattie 1996; Colwell 1997; Oliver et al. 

2000; Kean et al. 2012; Costello et al. 2013). The situation for microorganisms is similar and the existing 

and new molecular systems for processing microscopic invertebrates and the Bacteria, Archaea, and Fungi 
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are very exciting (e.g. Hayden 2012a,b; Boyer et al. 2012; Lozupone et al. 2012; Gewin 2012), Available high¬ 

speed methods already enable some aspects of microbial and invertebrate assessment and documentation. 

It is possible to compare, for example, natural and agricultural environments on the basis of the diversity of 

their microbial drivers such as methanogens, nitrogen-fixers or cellulose degraders with a view to determining 

serious changes in frequency if not their actual level of vulnerability to extinction, locally or otherwise (e.g. 

Tilman et al. 1999; Fierer et al. 2013). 

Biodiversity and Primary Industry 

The host of mostly tiny species that provide ecosystem services such as the regulation of soil fertility, structure 

and moisture content that are the foundation of all primary production industries could be called ‘production 

biodiversity’ or ‘agro-biodiversity’ (Thaman 2014). Many different groups of microbes and invertebrates are 

involved but, because these components of biodiversity are so rarely studied by conservation science, we do 

not know their conservation status. It is becoming clear that some agricultural methods affect the diversity 

of soils microbes, for example, the application of industrially produced nitrogenous fertilizers can reduce the 

activities of beneficial microbes (e.g. Carreiro et al. 2000; Fierer et al. 2013). 

The economic values of arthropods, especially insects, have been assessed with respect to their services as 

pollinators, biological control agents, the burial of the dung of exotic species such as cows and sheep, and their 

participation in the food chains of vertebrate species around which there are major recreational hunting and 

fishing industries (e.g. Isaacs et al. 2009; Losey and Vaughan 2006). These services are known to be worth many 

billions of dollars annually in the USA, and include groups not normally regarded as economic assets, such as 

beetles and flies. 

The critical importance of wild pollinators to crops around the world is now better appreciated. The decline 

of the honeybee in many nations means that farmers and orchardists are searching for alternatives, especially 

among native bees, generally from genera other than the honeybee. However, many kinds of insects are good 

pollinators, if only because they fly from flower to flower in very large numbers. They include flies, wasps, 

beetles, bees, and butterflies. Production from 87 leading global food crops is dependent on animal (mostly 

insect) pollination (Klein et al. 2007; Kennedy et al.2013). 

An important issue often missed by conservationists is the two-way interactions between crops and wild 

pollinators. With respect to benefits flowing from wild pollinators to crops, significant increases in yields 

result from the activities of wild pollinators of many kinds, not just bees, both in Australia (Blanche et al. 

2005, 2006; Heard et al. 1990) and worldwide (Ricketts et al. 2008; Garibaldi et al. 2010; 2011). In addition, 

global dependence on wild pollinators is increasing (Aizen et al. 2008). Although few crops rely exclusively on 

wild pollinators, yield increases in nearly all of these crops resulting from the activities of wild pollinators are 

important economically (Klein et al 2007) Thus it is beneficial to retain native vegetation in croplands for the 

provision of native pollinator habitat (Garibaldi et al. 2010,2011). 

With respect to the benefits of crops to wild species, the situation is less well understood, but research shows 

that, for example, the pollen and nectar resources offered by crops sustain or even increase the densities of 

arthropod species that are wild pollinators (Westphal et al. 2003). While the benefits have been assessed 

mainly for insects, it seems that other kinds of nectar and pollen feeding animals might also accrue. Further, 

agricultural land has multiple benefits for wild bees and wasps (Steffan-Dewenter 2003; Mandelik et al. 2012). 

This area of research needs more attention. 

Most biological control agents, especially those deployed among crops, are either microbial or invertebrate. 

This means that the major alternative to chemical pesticides resides within this vast biodiversity (Bellows and 

Fisher, 1999). A wide array of these organisms have been deployed for centuries (eg Beattie 1985), are already 

cultured in vast numbers for application to crops and orchards (e.g. http: //www.bugsforbugs.com.au) or are in 

the trial phase either as sole agents or for inclusion in integrated pest management schemes as shown regularly 

in the journal: http: //www.journals.elsevier.com/biological-control/. Bellows and Fisher (1999), a standard 

text on biological control agents, shows that arthropod biodiversity is a vast resource for pest control and it 

is rarely appreciated that mites and wasps, two groups generally regarded with hostility, are vast commercial 

resources containing very large numbers of parasitic species, most of which are highly specialised on their 

hosts, thus reducing the possibilities of disastrous ‘escapes’ such as the cane toad fiasco. Beetles are utilised 

on an industrial scale for dung control throughout the world (Nichols et al. 2008). The venoms of spiders 

have emerged as potential insecticides, being hyper-stable mini-proteins that target novel sites in specific pest 

insects. As there are roughly 100,000 spider species worldwide, there is a very large available resource base 

(Windley et al. 2012). 
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Ants can be biological control agents, but managing them can be difficult (e.g. Majer, 1986; Rico-Gray and 

Oliveira 2007). Together with termites, they provide other important services for which they are less well 

known, such as soil bioturbation and increasing water penetration and soil nitrogen in dry climate crops (Evans 

et al. 2011). A diverse range of invertebrates is vital for soil fertility in tropical (Lavelle et al. 1994; Lawton et 

al. 1996), arid (Whitford 1996) and temperate (De Deyn et al. 2003, Stinner and House 1990) ecosystems, 

and substrate quality in littoral (Lohrer et al. 2004) zones. The importance of earthworms to soil fertility has 

been known for centuries but it is only more recently that the beneficial activities of nematode worms, mites, 

springtails, beetles, termites, millipedes, centipedes, spiders and ants, cumulatively hundreds of thousands of 

species, have been documented. Biogeochemical cycles generated by the activities of invertebrates in littoral 

substrates (muds and sands) are poorly understood, but the importance of sea urchins, for example, have been 

clearly demonstrated (Lohrer et al. 2004). Many marine substrates are inhabited by entire phyla that are little 

known even to biologists; what they contribute is anyone’s guess. 

Microbial contributions to primary production industries are less well studied, but the pivotal importance of 

some are so well understood their names should be better known: Nitrosomonas, Nitrobacter, Pseudomonas 

and Azotobacter are among the bacterial genera that drive the global nitrogen cycle and hence soil fertility 

(de Vries and Bardgett 2012). As their activities are worth billions of dollars and their conservation status 

is unknown, they surely should be on the conservation agenda. While it may be that these genera are not 

endangered, local extinctions resulting from human activity are likely. The biodiversity of nitrogen-processing 

bacteria contains species that may be engineered into crop plants, reducing the need for fertilizer (Beatty and 

Good 2011). Larmers worldwide rely (mostly unknowingly) on specific species of fungi to turn crop stubble 

into nutrients for the next season’s crops (e.g. Pandey and Sinha 2008); Aspergillus and Trichoderma are two of 

the most important genera. Microbial ecologists are poised to greatly reduce farming costs by adding specific 

microbes to soils that suppress soil-borne crop pathogens (Mendes et al. 2011). Phosphorus is such a vital soil 

nutrient, especially in Australia, it is important to understand the microbes that drive the phosphorus cycle, 

especially as ‘Peak Phosphorus’ has been proposed (Clabby 2010; Smith et al 2011; Khan et al. 2009). Lungal 

biodiversity drives much ecosystem plant diversity, variability, and productivity (van der Heijden et al 1998) 

and is the resource for a major pest control industry (e.g. Remadevi et al. 2010). 

The need to understand how to conserve fungi has been recognised for some time (Hawksworth 1996). A 

study of the consequences of rainforest clearing for agriculture resonates with the Curtis quotation at the start 

of this article, as it emphasises that we do not know what to conserve, either for conservation or production, 

until the microbial biodiversity is known (Rodrigues et al. 2012). 

Similar concepts and perhaps an even greater urgency apply to marine ecosystems where, for example, the 

cyanobacterium Prochlorococcus is one of the most abundant photosynthetic organisms on Earth (Avrani et al. 

2011). The importance of research into this biodiversity is emphasised by recent results from environmental 

genomics which reveal previously unknown bacterial phyla (Wrighton et al. 2012; Taylor and Stocker 2012). 

Biodiversity and Secondary Industries 

uNature is the world's foremost designer. With billions of years of experience and boasting the most extensive 

laboratory available, it conducts research in every branch of engineering and science’! 

(J. Bar-Cohen, 2007; Biomimetics, Lavoisier, Lrance) 

Biodiversity and Energy: Research into microbial biodiversity has revealed a wide range of organisms that 

use solar energy and many different kinds of substrates, including waste materials, for biofuel production. The 

many promising alternatives include examples from bacterial, fungal, and algal biodiversity (Demain, 2000; 

Grayson et al. 2011; Wijffels and Barbosa 2010; Berka et al. 2011). Georgianna and Mayfield (2012) emphasise 

the vast genetic and metabolic diversity available in algal biodiversity alone. 

Biodiversity and Materials: This is a very exciting research field that is generating a wide array of medical and 

engineering materials derived from various microbes and invertebrates (e.g. http: //www.oxfordbiomaterials. 

com). Biomineralization, for example, is the process whereby soft-bodied invertebrates generate very hard 

materials such as shells and mouthparts, and is the focus of many research laboratories puzzled as to how 

the animals achieve this at ambient temperatures and without the large-scale application of high pressures 

and environmentally harmful chemicals that current manufacturing demands (e.g. Allen 2010). Especially 

interesting applications of this research are sponge spicules as models for optical fibres and mollusc nacre 

inspiring machine components (Aizenberg et al 2004; Barthelat 2010). The field is wonderfully interesting and 

varied; for example, the transfer of moth eye technology to solar cells (Dewan, 2012). 
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Biodiversity and Engineering: As with energy and materials, industry appears to be far more aware of the 

potential of invertebrate and microbial biodiversity for its needs than biologists and recognise it as a significant 

resource for thousands of projects, only a few can be mentioned here. Knowledge of fire beetles has lead to 

the development of a new generation of fire detectors, based on beetle technology, capable of detecting fires 

many kilometres distant (Klocke et al. 2011; Schmitz and Bousak 2012). Social insects have inspired design 

for engineers, computer scientists and architects (Holbrook et al. 2010). Arthropods are the focus of robotics 

research both for walking (e.g. Delcomyn 2004) and flying robots (e.g. http: //www.fir.epfl.ch/home). Perhaps 

the most futuristic application of microbial technology is as arrays of bacterial colonies or ‘biopixels’ organised 

as low-cost biosensors (Prindle et al. 2012). 

Biodiversity, Mining and Bioremediation: Microbial biodiversity harbours many kinds of organisms that 

metabolise metal salts that can be utilised on an industrial scale to sequester metals. In biomining the substrates 

are often mine tailings where inoculation with bacteria such as Leptospirillum and Ferroplasma yield liquid 

cultures’ from which precious or base metals are harvested (Rawlings and Johnson 2007; Reith et al.2009; 

http: //bart.bangor.ac.uk/documents/Mining%20and%20Microbiology 

The bioremediation industry also exploits microbial biodiversity and a wide variety of microbial species have 

been discovered that usefully metabolise many kinds of toxic contaminants. Examples include Deinococcus, a 

bacterium widely used for the bioremediation of radioactive waste sites. (Brim et al. 2000); Hymenoscyphus 

and Rhizopogon , two soil fungi that break down depleted uranium in war-contaminated soils (Fomina et 

al. 2008); Cyanobacterial/Microalgal consortia developed for the control of many different industrial waste 

products(Subashchandrabose et al. 2011). Pestalotiopsis is the first fungus to survive only on polyurethane 

(plastic) waste (Russell et al. 2012). 

Biodiversity and the Pharmaceutical Industry: This is classical bioprospecting and the most familiar area of 

biodiversity exploration, although most research has moved away from rainforest plants to the microbes and 

invertebrates of the oceans, seafloor, and extreme environments, all of which harbour immense metabolic 

and chemical diversity (e.g. Liu et al. 2010). The microbiome is the complex community of microbes that 

inhabits the surfaces and interiors of all species, including crop plants, endangered species - and ourselves, 

and is an exciting new area of research into microbial biodiversity. Very often, the numbers of microbial cells 

of a microbiome greatly outnumber the cells of the organism with which it is associated. Current research 

is exploring microbial biodiversity to understand the microbiome and to manage it, when necessary, with 

microbially-derived pharmaceuticals (Bascom-Slack et al. 2012; HMPC 2012; Waite et al. 2012). 

Biodiversity and Carbon Management: Bacteria, algae and fungi are all major players in the global carbon 

cycle. In this context too they are essential to the survival of humanity, but the diversity of even the dominant 

groups is still poorly understood and almost nothing is known of any possible need for their conservation 

(e.g. Jiao et al. 2010). 

The importance of including microbial and invertebrate biodiversity in conservation can perhaps be 

summarised under six headings: 

1. Inform 

To inform the biodiversity-based industries with the knowledge of the species upon which they depend. Primary 

and many other industries utilize microbial and invertebrate biodiversity as basic resources in many ways. 

Biodiversity bioprospecting is no longer confined to the pharmaceutical industry and is carried out by a wide 

variety of industries seeking species, life-history traits, adaptations, metabolic pathways, enzymes, behaviours, 

structures, and materials, mainly among microbial and invertebrate biodiversity, in every ecosystem on Earth 

(Beattie and Ehrlich 2004). 

2. Explain 

To explain ecosystem services in terms of the actual organisms that provide them and the mechanisms and 

functions involved (Vandermeer et al. 2010). In this context, the practical economic values of this major sector 

of biodiversity becomes manifest (Saunders and Walker 1998; Cardinale et al. 2012). 

3. Reveal 

To reveal the vast resources to be found in microbial and invertebrate biodiversity. If in doubt, check out 

the journal Bioinspiration and Biomimetics (http://iopscience.iop.org/1748-3190/) which is replete with 

engineering and medical projects largely based on these resources. 

4. Increase conservation 

To spread the responsibility for conservation. As biodiversity is a resource for many industries, its conservation 

is not just an issue for conventional conservation organisations. Inclusion places it in sectors either not 



190 Telopea 16: 185-193, 2014 Beattie 

normally associated with it. Biodiversity conservation becomes the concern for a far wider array of both public 

and private sectors. 

5. Reduce enemies 

As long as biodiversity is presented to the world as a small number of species, of concern mostly to relatively 

affluent groups that are easily and pejoratively labelled ‘greenies’, we continue to make unnecessary enemies 

of the individuals, lobby groups and industries who, because of that presentation, continue to be blind to its 

multiple economic benefits - and even to the fact that they depend on it. 

6. Action 

Finally reveal the conservation status of microbial and invertebrate species, especially those critical to society 

and industry. While it seems unlikely that many of these species are endangered globally, some appear to be 

going extinct locally or even regionally. Local extinction of critical species, such as nitrogen-fixers, is often 

costly and, as has been shown with earthworms, leads to widespread replacement by exotic species. 

Biodiversity is a concept that integrates conservation and industry. The economic and social benefits of 

microbial and invertebrate biodiversity are so great and pervasive that their inclusion in economic policy will 

reduce the seemingly insurmountable costs of conventional biodiversity conservation (McCarthy et al. 2012). 

Its importance to such a wide range of industries places it at the core of global natural capital and its inclusion 

could be one of the transformative changes required to achieve the sustainability of global civilization (Ehrlich, 

Kareiva and Daily 2012). 
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